Essential Imports

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn import datasets, preprocessing, model_selection, metrics

from sklearn.decomposition import PCA

from sklearn.cluster import KMeans

from sklearn.linear_model import LinearRegression, LogisticRegression

from sklearn.svm import SVC

from sklearn.neighbors import KNeighborsClassifier

from sklearn.tree import DecisionTreeClassifier

from sklearn.ensemble import (RandomForestClassifier, GradientBoostingClassifier,
BaggingClassifier, AdaBoostClassifier, GradientBoostingRegressor)

from sklearn.model_selection import GridSearchCV, RandomizedSearchCV

from sklearn.preprocessing import StandardScaler, LabelEncoder

from sklearn.metrics import (classification_report, confusion_matrix, accuracy_score,
mean_absolute_error, mean_squared_error, r2_score, silhouette_score)

1. DATA EXPLORATION & PREPROCESSING
def preprocess_data(df, target_column=None):
"""Complete data preprocessing pipeline™"
Handle missing values
df_clean = handle_missing_values(df, 'mean’)

Separate features and target
if target_column:
X = df_clean.drop(target_column, axis=1)
y = df_clean[target_column]
else:
X = df_clean
y = None

Scale numerical features

scaler = StandardScaler()

numerical_cols = X.select_dtypes(include=[np.number]).columns
X[numerical_cols] = scaler.fit_transform(X[numerical_cols])

return X, y, scaler

2. SUPERVISED LEARNING - REGRESSION

def linear_regression_example(X, y):
""Linear Regression Implementation'
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression

Split data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

Create and train model
model = LinearRegression()
model fit(X_train, y_train)

Predictions
y_pred = model.predict(X_test)

Evaluation

mae = mean_absolute_error(y_test, y_pred)
mse = mean_squared_error(y_test, y_pred)
rmse = np.sqrt(mse)

r2 = r2_score(y_test, y_pred)

print("~/ Linear Regression Results:")
print(f"MAE: {mae:.4f}, MSE: {mse:.4f}, RMSE: {rmse:.4f}, R {r2:.4f}")

return model, y_pred
def random_forest_regression(X, y):
"""Random Forest for Regression"™"
from sklearn.ensemble import RandomForestRegressor

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

model = RandomForestRegressor(n_estimators=100, random_state=42)
model.fit(X_train, y_train)

y_pred = model.predict(X_test)
Feature importance

feature_importance = pd.DataFrame({
‘feature': X.columns,

'importance': model.feature_importances_
}).sort_values(‘importance', ascending=False)

print(" & Random Forest Feature Importance:")
print(feature_importance.head())

return model, y_pred, feature_importance
3. SUPERVISED LEARNING - CLASSIFICATION
def logistic_regression_example(X, y):

""Logistic Regression Classification"""

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42, stratify=y)

model = LogisticRegression(random_state=42)
model.fit(X_train, y_train)

y_pred = model.predict(X_test)
y_pred_proba = model.predict_proba(X_test)

print(" ;;] Logistic Regression Results:")
print(classification_report(y_test, y_pred))
print("Confusion Matrix:")
print(confusion_matrix(y_test, y_pred))

return model, y_pred, y_pred_proba
def random_forest_classification(X, y):
"""Random Forest for Classification"™"

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42, stratify=y)

model = RandomForestClassifier(n_estimators=100, random_state=42)
model.fit(X_train, y_train)

y_pred = model.predict(X_test)

print(" & Random Forest Classification Results:")
print(classification_report(y_test, y_pred))

return model, y_pred
def svm_classification(X, y):

"""Support Vector Machine Classification
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42, stratify=y)

model = SVC(kernel="rbf', probability=True, random_state=42)
model fit(X_train, y_train)

y_pred = model.predict(X_test)

print("@ SVM Classification Results:")
print(classification_report(y_test, y_pred))

return model, y_pred
4. UNSUPERVISED LEARNING - CLUSTERING
def kmeans_clustering(X, n_clusters=3):
""K-Means Clustering Implementation

model = KMeans(n_clusters=n_clusters, random_state=42)
labels = model.fit_predict(X)

Calculate silhouette score

silhouette_avg = silhouette_score(X, labels)
print(f"@ K-Means Clustering (k={n_clusters})")
print(f"Silhouette Score: {silhouette_avg:.4f}")

return model, labels

def find_optimal_k(X, max_k=10):
""Find optimal number of clusters using elbow method""
distortions =[]
K =range(1, max_k + 1)

forkin K:
kmeans = KMeans(n_clusters=k, random_state=42)
kmeans.fit(X)

distortions.append(kmeans.inertia_)

Plot elbow curve
plt.figure(figsize=(10, 6))

plt.plot(K, distortions, 'bx-')
plt.xlabel('Number of Clusters (k)')
plt.ylabel('Distortion’)

plt.title('Elbow Method for Optimal k')
plt.show()

return distortions

5. DIMENSIONALITY REDUCTION
def pca_analysis(X, n_components=None, variance_threshold=0.95):
""Principal Component Analysis"""
if n_components is None:
pca = PCA(n_components=variance_threshold)
else:
pca = PCA(n_components=n_components)

X_pca = pca.fit_transform(X)

print("Cy, PCA Analysis Results:")

print(f"Original Shape: {X.shape}")

print(f"PCA Shape: {X_pca.shape}")

print(f"Explained Variance Ratio: {pca.explained_variance_ratio_}")
print(f"Total Variance Explained: {pca.explained_variance_ratio_.sum():.4f}")

Plot explained variance

plt.figure(figsize=(10, 6))

plt.plot(range(1, len(pca.explained_variance_ratio_) + 1),
np.cumsum(pca.explained_variance_ratio_))

plt.xlabel('Number of Components')

plt.ylabel('Cumulative Explained Variance')

plt.title('PCA Explained Variance')

plt.grid(True)

plt.show()

return pca, X_pca

6. MODEL EVALUATION & HYPERPARAMETER TUNING
def evaluate_classification_model(model, X_test, y_test):
""Comprehensive classification model evaluation"™
y_pred = model.predict(X_test)
y_pred_proba = model.predict_proba(X_test)[:, 1] if hasattr(model, "predict_proba") else None

print(" ;;] Model Evaluation Metrics:")

print("="*50)

print(classification_report(y_test, y_pred))

print("\nConfusion Matrix:")

print(confusion_matrix(y_test, y_pred))

print(f"\nAccuracy Score: {accuracy_score(y_test, y_pred):.4f}")

return y_pred, y_pred_proba

def hyperparameter_tuning(model, param_grid, X, y, cv=5):

"""Hyperparameter tuning using GridSearchCV""
grid_search = GridSearchCV/(

estimator=model,

param_grid=param_grid,

cv=cy,

scoring="accuracy',

n_jobs=-1,

verbose=1

)
grid_search fit(X, y)

print("@ Hyperparameter Tuning Results:")
print(f"Best Parameters: {grid_search.best_params_}")
print(f"Best Cross-Validation Score: {grid_search.best_score_:.4f}")

return grid_search

7. COMPREHENSIVE ML PIPELINE
def complete_ml_pipeline(df, target_column, problem_type='classification'):

Complete ML pipeline from data loading to model evaluation

Parameters:

- df: pandas DataFrame

- target_column: name of target variable

- problem_type: 'classification' or 'regression’

print("%” STARTING COMPLETE ML PIPELINE"

print("="+60)

Step 1: Data Exploration
print("1. ;;] DATA EXPLORATION")
explore_data(df)

Step 2: Preprocessing
print("\n2. (=] DATA PREPROCESSING")
X, y, scaler = preprocess_data(df, target_column)

Step 3: Model Training based on problem type
print(f\n3. g MODEL TRAINING ({problem_type.upper()})")

if problem_type == 'classification":
models = {
‘Logistic Regression': LogisticRegression(random_state=42),
‘Random Forest': RandomForestClassifier(random_state=42),
'SVM'": SVC(random_state=42, probability=True)
}
else: # regression
models = {
‘Linear Regression': LinearRegression(),
'Random Forest': RandomForestRegressor(random_state=42)

}

Train and evaluate each model
results = {}
for name, model in models.items():
print(f"\n--- {name} ---")
if problem_type == 'classification":
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.3, random_state=42, stratify=y)
else:
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.3, random_state=42)

model fit(X_train, y_train)
y_pred = model.predict(X_test)

if problem_type == 'classification':
accuracy = accuracy_score(y_test, y_pred)
results[name] = accuracy
print(f"Accuracy: {accuracy:.4f}")

else:
r2 = r2_score(y_test, y_pred)
results[name] = r2
print(f"R? Score: {r2:.4f}")

Find best model
best_model_name = max(results, key=results.get)
print(f\n".” BEST MODEL: {best_model_name} (Score: {results[best_model_name]:.4f})")

return results, models[best_model_name]

8. QUICK START EXAMPLES

def quick_classification_example():
""Quick classification example with iris dataset"™"
from sklearn.datasets import load_iris

Load data

iris = load_iris()

X, y = iris.data, iris.target
feature_names = iris.feature_names

print(" = Iris Dataset Classification Example")
print("Features:", feature_names)
print("Target classes:", np.unique(y))

Preprocessing
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

Train model
X_train, X_test, y_train, y_test = train_test_split(
X_scaled, y, test_size=0.3, random_state=42, stratify=y)

model = RandomForestClassifier(n_estimators=100, random_state=42)
model.fit(X_train, y_train)

Evaluate
y_pred = model.predict(X_test)

accuracy = accuracy_score(y_test, y_pred)

print(f"Model Accuracy: {accuracy:.4f}")
print("\nClassification Report:")
print(classification_report(y_test, y_pred, target_names=iris.target_names))

return model, accuracy

def quick_regression_example():
"""Quick regression example with diabetes dataset""
from sklearn.datasets import load_diabetes

Load data
diabetes = load_diabetes()
X, y = diabetes.data, diabetes.target

print(" ¢ Diabetes Dataset Regression Example")
print(f"Dataset shape: {X.shape}")

Train model
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

model = RandomForestRegressor(n_estimators=100, random_state=42)
model.fit(X_train, y_train)

Evaluate

y_pred = model.predict(X_test)

r2 = r2_score(y_test, y_pred)

rmse = np.sqrt(mean_squared_error(y_test, y_pred))

print(f"R? Score: {r2:.4f}")
print(f"RMSE: {rmse:.4f}")

return model, r2, rmse

#9. VISUALIZATION TOOLS
def plot_feature_importance(model, feature_names, top_n=10):
""Plot feature importance for tree-based models""
if hasattr(model, 'feature_importances_"):
importance = model.feature_importances_
indices = np.argsort(importance)[::-1]

plt.figure(figsize=(10, 6))
plt.title("Feature Importance")
plt.bar(range(min(top_n, len(importance))),
importance[indices][:top_n])
plt.xticks(range(min(top_n, len(importance))),
[feature_names]i] for i in indices[:top_n]], rotation=45)
plt.tight_layout()
plt.show()
else:
print("Model doesn't have feature_importances_ attribute")

def plot_confusion_matrix_heatmap(y_true, y_pred, class_names=None):
""Plot confusion matrix as heatmap"""
cm = confusion_matrix(y_true, y_pred)

plt.figure(figsize=(8, 6))

sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',
xticklabels=class_names, yticklabels=class_names)

plt.title('Confusion Matrix')

plt.ylabel('True Label')

plt.xlabel('Predicted Label')

plt.show()

